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Unsteady flow past a sphere at low Reynolds number 
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This paper complements an earlier paper by Bentwich & Miloh in which the matched 
asymptotic expansion type of solution is presented for an unsteady low-Reynolds- 
number flow past a sphere when a constant rectilinear velocity is suddenly imparted 
to the sphere. It is shown that the matching procedure proposed in the earlier paper 
is incomplete. The present paper represents a complete procedure for successful 
matching; the drag of the sphere is calculated up to the term of O(Re2 In Re) using 
the new procedure. 

1. Introduction 
Recently, Bentwich & Miloh (1978) considered the problem of unsteady viscous 

incompressible flow past a solid sphere when a finite rectilinear velocity U is suddenly 
imparted to the sphere. They obtained the asymptotic solution for small Reynolds 
number by using the method of matched asymptotic expansions. The matching 
procedure proposed by them is based on a generalization of the well-known work of 
Proudman & Pearson (1957) for steady motion. They divided the ( r ,  t )  plane (r and t 
being a non-dimensional radial co-ordinate and the non-dimensional time respectively) 
into two regions as shown in figure 1 ;  one is the L-shaped region adjacent to r and t 
axes, where r = O(1) and t = O(l ) ,  and the other is the rectangular region far from 
the axes, where r = O(Re-l) and t = O(Rec2), where Re denotes the Reynolds number. 
They proposed to develop separate, locally valid, expansions in terms of Re in these 
two regions and obtained the first few terms in each of these by adopting the matching 
procedure demonstrated in figure 1.  However, as we shall see below, their method is 
incomplete for obtaining the higher-order terms. 

In the L-shaped region, Bentwich & Miloh introduced the following non-dimensional 
variables 

$ = $'/Ua2, r = r ' la ,  t = t'v/a2, (1) 

in terms of which the governing equation can be written as 

where 

R e =  Ua/v,  (3) 

In  the above equations, ( r ' ,  8 ,$)  are spherical co-ordinates with r' = 0 at the centre 
of the sphere and 8 = 0 in the direction of the undisturbed stream, a the radius of the 
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FIGURE 1. Schematic sketch demonstrating the matching procedure proposed 
by Bentwich & Miloh (1978). 

sphere, t‘ the time, 1’ the kinematic viscosity and $’ the stream function related to the 
velocity components (u;, uh) in the (r’, 8) directions by 

u: = ( 1  /r’2 sin 0) a$’/ at?, U; = - ( 1/r‘ sin 8) a$’/&’. (4) 

The boundary conditions are 

(5) J 
$ = a $ / &  = 0 for T = I ,  0 G 8 6 T, 

++&r2sin2i3H(t) as r - + q  

$ = O  for t = 0,  1 < r <GO, 

where H(t) is the Heaviside step function. They assumed that the solution of (2) has 
the form 

(6) 

The leading term, $o, satisfies the unsteady Stokes equation. They showed that the 
equations for +n’s have solutions satisfying the boundary condition at  infinity as 
well as the boundary condition on the surface and the initial condition provided that 
t is finite, and that, as t tends to infinity, the first term $o approaches the steady 
Stokes solution. Their work thus seems to imply that the expansion (6) is valid 
throughout the L-shaped region and that away from this region (6) is singular as in 
the case of steady motion and there the outer expansion prevails. 

We should remember at  this point, however, that in the steady motion the solution 
near the surface is affected by the outer solution which is valid for r of O(Re-l) through 
the matching condition between them. It is therefore probable that the solutions for 
$%’a, which are completely determinable without such a matching process, become 
invalid as t increases. We can in fact show that the second term in (6), does not 
approach the corresponding steady solution as t 3 00. The proof is easy. Noting that 

$ = $&, 8, t )  + Re $l(r,  8, t) + . . . . 
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the solution for $o has the form $o = f(r, t )  sin28 (Bentwich & Miloh), we can easily 
obtain the following equation for $1: 

(7) 
where f and g are functions of r and t .  It is easy to show that the solution of (7)  satisfying 
the initial and boundary conditions (both on the surface and a t  infinity) has the form 

(8) 

where h is also a function of r and t .  On the other hand, the corresponding steady 
solution given by Proudman & Pearson is 

$l = -&(2r2-3r+ 1 -r-1+r-2)sin28cos8+&(2r2-3r+r-1)sin28. (9) 

Apparently, (8) cannot approach this steady solution as t+a ,  meaning that (6) is 
invalid for large t even in the vicinity of the sphere, and Bentwich & Miloh's way of 
dividing the ( r ,  t )  plane is correct only if the expansion in the L-shaped region contains 
one term. 

Thus, we have now found that the matching procedure proposed by Bentwich & 
Miloh is incomplete to obtain the higher-order terms. The purpose of the present paper 
is to complement their work by representing a complete procedure for successful 
matching. The drag of the sphere is calculated as far as the term of O(Re2 In R e )  using 
the new matching procedure. 

(a/at - A2) A2$1 = g(r, t )  sin28 cos 8, 

= h(r, t )  sin28 cos 8, 

2. Proposed matching procedure 
The considerations of the preceding section suggest that (6) is valid only when 

t = O( 1)  and therefore that the L-shaped region suggested by Bentwich & Miloh must 
be subdivided into two domains as shown in figure 2; one is a small-time domain where 
t = O(1) and the other a large-time inner domain where t = O(Re-2) and r = O(1). 
Thus, including a large-time outer domain where t = O(Re-2) and r = O(Re-l) ,  the 
present problem has a three-region structure.? In  the small-time domain, the vorticity 
layer is confined to  the inner region near the surface and hence the assumption that 
the nonlinear inertia terms are negligible is valid throughout the flow field. The 
solution in this domain is given by (6)) which is required to satisfy the boundary 
conditions both on the surface and a t  infinity as well as the initial condition. I n  the 
large-time inner domain, the a/at term is also small, as we shall see later, along with the 
nonlinear term; namely, the motion in this domain is quasi-static. The requirement 
of the outer domain in r in the large-time region is due to the fact that, as t increases, 
the vorticity layer diffuses into the outer region where all the terms in the momentum 
equation are of the same order of magnitude and the (large-time) inner solution fails. 

The construction of the two expansions in the large-time region is made in such a 
way that: (1) the inner expansion satisfies the boundary condition on the surface; 
( 2 )  the outer expansion satisfies the boundary condition a t  infinity; (3) the two ex- 
pansions match identically in the overlapping domain in space where both expansions 
are valid and also match the small-time expansion (6) a t  small values of T, T being a 
time variable in the large-time region. 

circular-cylinder problem. 
-f Bentwich & Miloh (1981) have shown independently that a similar structure exists in the 
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FIGURE 2. Schematic sketch demonstrating the matching procedure 

Since the non-dimensional distance over which vorticity diffuses after impulsive 
start of the sphere is O(fg), the time required for the vorticity layer to reach to the 
outer domain, where r = O(Re-l), is O(Re-2). This suggests that the time variable 
which is appropriate in the large-time region is 

T = Re2t, (10) 

which was already introduced by Bentwich & Miloh. In terms of (lo), the governing 
ecruation can be written as 

1 a($(i), A2$(i)) 2A2$@) a($(i), r sin 8) 
( Re2 a/aT - A2) A2yYi) = Re - -- 

( r 2  sin 8 a(r, 0)  r3 sin28 a(r, 8) 
where 

The relation (1 1 )  is valid in the large-time inner domain. The analysis for the steady 
flow suggests that the appropriate expansion for $(Q is 

gVi)(r, 8, T) = $(r, 8, t ) .  (12) 

I+W = $ f ) ( r ,  8, T) + Re@(r, 8, T) + Re2(ln Re)$F)(r, 8, T) + O(Re2). (13) 

(14) 

In the large-time outer domain, we introduce the following outer variables 

R = Re r ,  $(O)(R, 0, T) = Re2$(r, 8, t ) ,  

in terms of which the governing equation can be written as 

where 0 2  is the same operator as A2 but with r replaced by R. The appropriate ex- 

(16) 
pansion for f0) is 

$(O) = 4R2 sin28 + Re $i'N(R, 8, T) + O(&2), 

the first term of which represents a uniform flow. 
Note that in the limit Re+ 0 the unsteady term in equation (1 1)  can be neglected. 
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It follows that long after motion has begun the flow field close to the sphere is quasi- 
steady. In other words, time plays no role in the equation governing the motion in 
that field and its time dependence is determined by the outer field via matching. The 
time dependence so obtained is verified later by the fact that the late inner expansion 
matches that prevailing when motion just begins. 

Substituting (13) into ( l l ) ,  we have 

A4$f) = 0, (17) 

A4$2) = 0. (19) 

The solution of (17 )  which matches (16) is clearly the steady Stokes solution 

and hence f18) becomes 
\ I  

9 2  3 1 
A4$f) = - - (- - - + .) sin28 cos 8. 4 r2 r3 

The solution of (21) satisfying the boundary condition on the surface is 

sin28cos 8+ C(T) 

where C ( T )  is an integration constant depending on T and is to be determined through 
matching with the outer solution. 

The equation for the second term $io) in the outer expansion (16) is the unsteady 
Oseen equation and a solution which matches to both the small-time and Stokes 
solutions has been obtained by Bentwich & Miloh. According to their solution, the 
asymptotic behaviour of $i0) for small R is given by 

exp(-&T)-cosO R2+O(R3). (23) 

Therefore, in order to satisfy the matching condition between the inner and outer 
expansions, the asymptotic behaviour of $?) for large r should be of the form 

From (22) and (24), C ( T )  can be determined as 

Thus, $ii) has been determined as follows : 

+- (n;)b (1 -:) exp ( - 42') 



438 T. Sano 

For T+m, (26) gives its steady counterpart (9) given by Proudman & Pearson. 
Furthermore, it can easily be shown that the first two terms in the large-time inner 
expansion (13) match the small-time expansion. If we substitute (20) and (26) into 
(13) and recast the latter in terms oft, we can obtain the following equation 

+Re -- 2r2-3r+l - -+-  r ' r2 1)+.~.)sin~BcosB+O(Re21nRe). (27) 

We can easily verify that the first term agrees completely with the asymptotic be- 
haviour of $,, for large t. Moreover, we can see that the 0 dependence of the second 
term and that of the solution for as given by (8), are identical. This suggests that 
these two also match. 

Finally, the solution of (19) can be obtained using the condition that there is no 
term of O(Re21n Re) in the large-time outer expansion (Proudman & Pearson) and is 
found to be given by the following steady solution 

( 2 

The fact that (28) is independent of T suggests that this term matches that of O(Re2) 
in the small-time expansion. 

3. Discussions 
In the large-time region, the inner solution has been obtained up to the term of 

O(Re21n Re). Therefore, it  is desirable to obtain the second term in the small-time 
expansion in order to make the present analysis complete. However, since the calcula- 
tion for obtaining is very tedious and since the term contributes nothing to the 
drag because of symmetry, it is excluded. 

From (20), (26) and (28), the drag of the sphere for the large-time domain can be 
calculated as 

2 
D = D, [ 1 +*Re { (1 +&) erf (+,/T) +(n~)+ (1  -g) exp ( - $T)} 

1 

+ & Re2 In Re + O( Re2) , (29) 

where D, denotes the steady Stokes drag, and that for the small-time domain can be 

(30) 
written as 

where the terms of O( I)  were obtained by Bentwich & Miloh, 8(t) denoting the Dirac 
delta function. From (29) and (30)) we can construct a single composite expansion for 
the drag which is uniformly valid for all values of time by adding them and then 
subtracting the common part. The result is 

1 
D = D,(H(t) + Q&t) + ( d - 4  + O(Re2)}, 

H ( t )  + @(t) + (nt)-* + #Re (( 1 + - R;&) erf ($Redt) 

+- (nt)4Re 2 (' -&) exp ( - &Re2t) - 3(nt)*Re )+&Re21nRe+O(Re2) 

Figure 3 shows the relation between D/Ds and T for several values of Re. 
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FIGURE 4. Development with time of vorticity on the surface of the sphere for Re = 0.1. 
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FIGURE 5. Comparison of progression of separation angle 8, with the numerical solution of 
Dennis & Walker (1972), at Re = 20. 
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In figure 4 the development with time of the vorticity u on the surface of the sphere 
calculated from the large-time inner solution is shown for Re = 0.1. 

Finally, we shall discuss the formation of an eddy behind the sphere, thejboundary 
of which may be calculated from the equation obtained by equating to zero the 2-term 
large-time inner expansion, et) + @p'Re. In the similar calculation for steady flow, 
the eddy first appears at  the rear stagnation point when Re = 8, which is so large 
that one would not have expected the low-Reynolds-number expansion to have any 
validity. Nevertheless, Van Dyke (1975) shows that up to Re = 60 the length of the 
steady eddy calculated from the 2-term inner expansion agrees well with the experi- 
mental observations of Taneda (1956). In order to see whether such agreement exists 
in the unsteady flow also, we compare in figure 5 the progression with time of the 
separation angle 8, calculated from (20) and (26) with that obtained numerically by 
Dennis & Walker (1972), at Re = 20. It is seen that agreement is not satisfactory, 
especially in the value of the separation time T,, the time at  which the eddy first 
appears. The value of 2'' predicted by the present theory is too small compared with 
that of numerical calculation. As T increases, however, agreement between the two 
values of8, becomes satisfactory. In  conclusion, we can say that for the unsteady flow 
the 2-term (large-time) inner expansion can give information about the eddy only in 
the final stage near the steady state. 

The author wishes to thank the referees for their valuable comments which helped 
him to improve the presentation. 
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